

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/41

Paper 4 Theory (Extended)

October/November 2021

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1	Some elements	are	shown	in	the	order	they	appear	in	the	reactivity	series.	The	most	reactive
	element is at the	top.													

sodium
calcium
magnesium
aluminium
zinc
iron
hydrogen
copper

		copper	
(a)		swer the questions using the list of elements. Each element may be used once, more the ce or not at all.	ian
	lde	ntify:	
	(i)	a non-metal	
			[1]
	(ii)	a metal which is stored under oil	
			[1]
((iii)	the main component of steel	
			[1]
((iv)	a metal with three electrons in the outer shell of its atoms	
			[1]
	(v)	a metal found in brass	
			[1]
((vi)	a metal that forms chlorides of the type $\mathrm{XC}\mathit{l}_{2}$ and $\mathrm{XC}\mathit{l}_{3}$.	
			[1]
(b)	Nar	me the main ores of:	
` '			[1]
	(ii)		[1]
(c)	In a	an experiment, a sample of aluminium appeared less reactive than expected.	
	Exp	plain why.	
			[1]

(d)	Na	me two metals from the list which are extracted by reduction of their ores using carbon.	
	1.		
	2 .		 [2]
(e)		nen zinc granules are added to aqueous copper(II) sulfate, a reaction occurs. During taction, a red-pink solid is formed and the solution becomes colourless.	he
	(i)	Name the red-pink solid.	
			[1]
	(ii)	Name the colourless solution.	
			[1]
	(iii)	Explain, in terms of particles, why the rate of this reaction increases when the temperatus is increased.	ıre
			[3]
((iv)	Suggest two other ways of increasing the rate of this reaction.	
		1	
		2	 [2]
		PT-1-1	1

2	This au	action is shout a	onnor and its se	mnounda						
2	•	estion is about co		•						
	(a) Copper has two different naturally occurring atoms, ⁶³ Cu and ⁶⁵ Cu.									
	(i)	State the term u	ised for atoms	of the same el	ement with diff	erent nucleon numbers.				
							[1]			
	(ii)	The atomic num	nber of copper i	s 29.						
		Complete the ta		number of pro	otons, neutrons	and electrons in the particl	es			
				⁶³ Cu	⁶⁵ Cu ²⁺					
			protons							
			neutrons							
			electrons							
				I		J	[3]			
	(iii)	Relative atomic	mass is the av	erage mass of	naturally occu	rring atoms of an element.				
		The percentage	of the naturally	y occurring ato	ms in a sampl	e of copper is shown.				
			6	⁶⁵ Cu	1					
				70% 30%						
		Deduce the rela	utive atomic ma	ss of copper in	this sample.					
		Give your answ	er to one decin	nal place.						
		,		,						
				re	lative atomic n	nass =	[2]			

		hydrous copper(II) sulfate is used to test for the presence of water. When this test is positive, rated copper(II) sulfate is formed.
	(i)	State the colour change seen during this test.
		from to
(ii)	Complete the chemical equation to show the reaction that takes place.
		$CuSO_4 + \dots \rightleftharpoons CuSO_4 \bullet 5H_2O$ [1]
(i	ii)	$State\ how\ hydrated\ copper(II)\ sulfate\ can\ be\ turned\ back\ into\ anhydrous\ copper(II)\ sulfate.$
		[1]
(i	v)	Describe a test for pure water.
		[2]
(c)	Aqu	neous copper(II) sulfate contains Cu ²⁺ (aq) ions.
	(i)	Describe what is seen when aqueous copper(II) sulfate is added to aqueous sodium hydroxide, NaOH(aq).
		[1]
(ii)	Write the ionic equation for the reaction between aqueous copper $\!$
		Include state symbols.
		[3]

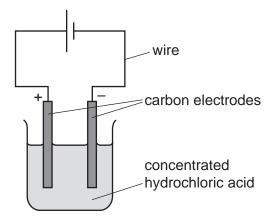
[Total: 22]

(d)	When solid	copper(II)	nitrate is	s heated	copper(II)	oxide,	nitrogen	dioxide	and	oxygen	are
	formed.										

$$2 \text{Cu(NO}_3)_2 \, \rightarrow \, 2 \text{CuO} \, + \, 4 \text{NO}_2 \, + \, \text{O}_2$$

Calculate the volume of nitrogen dioxide formed at room temperature and pressure when $4.7\,\mathrm{g}$ of $\mathrm{Cu}(\mathrm{NO_3})_2$ is heated.

Use the following steps:


(e)

•	calculate the mass of one mole of	Cu(NO ₃) ₂
---	-----------------------------------	-----------------------------------

• calculate the number of moles of Cu(NO ₃) ₂ used
mole
determine the number of moles of nitrogen dioxide formed
mole
calculate the volume of nitrogen dioxide formed at room temperature and pressure.
dm [²
Write the chemical equation to show the action of heat on sodium nitrate, NaNO ₃ .

3 This question is about electrolysis.

Concentrated hydrochloric acid is electrolysed using the apparatus shown.

- (a) Chloride ions are discharged at the anode.
 - (i) Complete the ionic half-equation for this reaction.

......
$$Cl^{-}(aq) \rightarrow(g) +e^{-}$$
 [2]

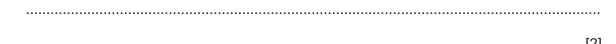
(ii) State whether oxidation or reduction takes place. Explain your answer.

 	 [1]

(b) Describe what is seen at the cathode.

г	[A]	
		1

(c) Write the ionic half-equation for the reaction at the cathode.


FOT	
コン	1
	1

- (d) The pH of the electrolyte is measured throughout the experiment.
 - (i) Suggest the pH of the electrolyte at the beginning of the experiment.

 [1]

(ii) State how the pH changes, if at all, during the experiment.

Explain your answer.

(e)	The electrolysis is repeated using molten lead(II) bromide.
	Describe what is seen at the:
	cathode
	anode
	[2
(f)	State two properties of graphite (carbon) which make it suitable for use as an electrode.
	1
	2[2
	[Total: 13

[2]

4 Chalcopyrite, FeCuS ₂ , is used in the manufacture of sulfuric acid in the Co	Contact process
--	-----------------

(a)	In the first	stage of	the process,	chalcopyrite	reacts	with	oxygen	in	the	air	to	produce
	sulfur dioxid	de. SO _a . iro	n(III) oxide a	nd copper(II)	oxide.							

Complete the chemical equation for the reaction of FeCuS₂ with oxygen.

$$4FeCuS_2 + 13O_2 \rightarrow \dots + \dots + \dots + \dots$$
 [2]

(b) Sulfur dioxide is then converted to sulfur trioxide.

$$2SO_2 + O_2 \rightleftharpoons 2SO_3$$

The reaction is exothermic. It is also an equilibrium.

(i)	State two	features	of an	equilibrium.
-----	-----------	----------	-------	--------------

1	l	•
-		

(ii) State the temperature and pressure used in this reaction. Include units.

	temperature	
•	temperature	

(iii) Name the catalyst used.

(iv) Explain why a catalyst is used.

(v) Describe and explain, in terms of equilibrium, what happens when the temperature is increased.

വ

(c) Concentrated sulfuric acid is a dehydrating agent.

When glucose is dehydrated, carbon and one other product are formed.

Complete the equation to show the dehydration of glucose, C₆H₁₂O₆.

$$C_6H_{12}O_6 \rightarrowC +$$
 [2]

[Total: 12]

5			and carboxylic acids are both families of similar compounds with similar chemical properties and carboxylic acids have different reactions.	}S.
	(a)	Sta	te the term used for a 'family' of similar compounds.	
				[1]
	(b)	Sta	te the general formula of alkenes.	
				[1]
	(c)	The	e structure of but-2-ene is shown.	
			H H H 	
		(i)	But-2-ene reacts with aqueous bromine in an addition reaction.	
			Describe the colour change seen when but-2-ene is added to aqueous bromine.	
			from to	[1]
		(ii)	State what is meant by the term addition reaction.	
				[1]
	((iii)	Write the chemical equation for the reaction between but-2-ene and bromine.	

(iv) But-2-ene forms a polymer.

Suggest the name of the polymer formed from but-2-ene.

......[1]

(v) Name and draw a structural isomer of but-2-ene.

Show all of the atoms and all of the bonds.

name

structure

) But	tanoic acid, CH ₃ CH ₂ CH ₂ COOH, is a carboxylic acid.	
(i)	Deduce the empirical formula of butanoic acid.	
		[1
(ii)	Complete the chemical equation for the reaction of butanoic acid and sodium carbona $\mathrm{Na_2CO_3}$.	ıte
	$2CH_3CH_2COOH \ + \ Na_2CO_3 \ \rightarrow \ \dots \\ + \ \dots \\$	[2
(iii)	Butanoic acid reacts with methanol to form an organic compound and water.	
	Name the organic compound formed.	
		[1
	Draw the structure of the organic compound formed.	
	Show all of the atoms and all of the bonds.	

[2]

[Total: 15]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

Group					6 8 2 9		boron carbon nitrogen oxygen fluorine 11 12 14 16 19	14 15 16 17	Si P C1	abuminium silicon phosphorus suffur chlorine argon 27 28 31 32 36.5 40	25 26 27 28 29 30 31 32 33 34 35	Mn Fe Co Ni Cu Zn Ga Ge As Se Br	iron cobalt nickel copper zinc gallium germanium arsenic selenium bromine 56 59 59 84 65 70 73 73 75 79 80	43 44 45 46 47 48 49 50 51 52 53	Tc Ru Rh Pd Ag Cd In Sn Sb Te I	technetium ruthenium rhodium palladium silver cadmium indium tin antimony tellurium iodine - 101 103 106 108 115 115 119 122 128 127	75 76 77 78 79 80 81 82 83 84 85	Re Os Ir Pt Au Hg T1 Pb Bi Po At	lead bismuth polonium astatine	107 108 109 110 111 112 114	Bh Hs Mt Ds Rg Cn F1	habeium haceium moitractium dammetactium montractium constructium lis
											30	Zu	zinc	48	p	admium 112	80	Hg	nercury 201	112	C	- micina
																						_
														+								_
Group														-								_
		-]	T nydrogen	1																		_
											25	Mn	nanganese 55	43	ပ	technetium –	75	Re	rhenium 186	107	Bh	hobrii
						Ю	ø							\perp			_					
			2	Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	14	g	niobium 93	73	<u>ra</u>	tantalum 181	105	P	dubnium
					atc	aton	relativ				22	F	titanium 48	40	Zr	zirconium 91	72	士	hafhium 178	104	¥	nitherfordium
				l							21	လွ	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	_
	=				4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ва	barium 137	88	Ra	a ijo
	_				3		lithium 7	1	Na	sodium r	19	メ	otassium 39	37	Rb	ubidium 85	55	Cs	aesium 133	87	Ľ.	- mijode.

		_			
r Lu	lutetium 175	103	۲	lawrencium	I
°	ytterbium 173	102	%	nobelium	I
ee Tm	thulium 169	101	Md	mendelevium	ı
88 Fr	erbium 167	100	Fm	ferminm	ı
67 H0	holmium 165	66	Es	einsteinium	ı
° ^	dysprosium 163	86	ŭ	californium	ı
65 Tb	terbium 159	97	Ř	perkelium	ı
Gd 64	gadolinium 157	96	Cm	curium	ı
e3 Eu	europium 152	92	Am	americium	ı
Sm	samarium 150	94	Pu	plutonium	ı
Pm	promethium	93	ď	neptunium	ı
。 9 P	neodymium 144	92	\supset	uranium	238
59 Pr	praseodymium 141	91	Ра	protactinium	231
C 28	cerium 140	06	H	thorium	232
57 La	lanthanum 139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).